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cuapTir3 | 4.2 ka BP Megadrought and
the Akkadian Collapse

HARVEY WEISS

The Akkadians, of southern Mesopotamia, created the first empire ca. 2300
BC with the conquest and imperialization of southern irrigation agriculiure
and northern Mesopotamian dry-farming landscapes. The Akkadian Empire
conquered and conirolled a territory of roughly 30,000 square kilometers and,
importantly, its wealth in labor and cereal crop-yields. The Empire maintained
o standing army, weaponry, and a hierarchy of administrators, scribes,
surveyors, craft specialists, and transport personnel, sustainable and profitable
for about one hundred years. Archaeological excavations indicate the empire
was still in the process of expansion when the 2200-1900 BC/4.2-3.9 ka
BP global abrupt climate change deflected or weakened the Mediterranean
westerlies and the Indian Monsoon and generated synchronous megadrought
across the Mediterranean, West Asia, the Indus, and northeast Africa. Dry-
farming agriculture domains and their productivity across West Asia were
reduced severely, forcing adaptive societal collapses, regional abandonmenis,
habitat-tracking, nomadization, and the collapse of the Akkadian Empire.
These adaptive processes extended across the hydrographicallyvaried landscapes
of west Asia and thereby provided demographic and societal resilience in the
face of the megadrought’s abruptness, magnitude, and duration.

The Physical Setting

Mesopotamia is the lowland drainage, alluvial plain of the Tigris and
Euphrates Rivers and extends from the Anatolian plateau, source of the
Tigris and Euphrates Rivers, to the Persian Gulf (fig. 3.1). The Tigris and the
Euphrates are fed by the winter precipitation of the cyclonic Mediterranean
westerlies, which also provide 200 to 500 millimeters of precipitation along
the southern edge of the plateau where the alluvial plain begins, with an
interannual variability of about 20 percent. Hence, high-yield cereal dry
farming is practiced within the valleys of Anatolia and extensively across
the lowland plains that extend from the base of the plateau to the limits of



dry-farming precipitation at the 200 to 300 millimeter isohyet. The region '
extends some 150 to 200 kilometers southward from the base of the plateau
and encompasses northern Mesopotamia, including northeastern and north-
western Syria (Wirth 1971).

As the Tigris and Euphrates drop from the Anatolian plateau onto the north-
ern Mesopotamian plains below, they incise their riverbeds to tens of meters
and become inaccessible for plain-level irrigation. However, as the rivers course
through their near conjunction at ancient Sippar and modern Baghdad, the ele-
vation of the plains gradually drops to just 37 meters above sea level and slows
their flow. Still farther south, where precipitation is well below 300 millimeters
per annum, the rivers begin to approach plain level and become available for irri-
gation agriculture (Buringh 1960). Southern irrigation agriculture cereal yields
are one-and-a-half to two times greater per unit cultivated than northern dry-
farming yields, but they are limited in extent to thin ribbons of canal-watered
fields (Weiss 1986). Mesopotamia’s agricultural setting, then, encompasses three
regions: extensive lowland dry farming to the north, intensive irrigation agri-
culture to the south, and the semi-arid steppe between that serves the seasonal
transhumance of the region’s pastoral nomadic populations and their flocks.

Early Irrigation Agriculture

Abrupt century-scale megadroughts occurred across West Asia at nearly millen-
nial intervals of the Holocene and, by their abruptness, magnitude, and duration,
severely affected the productivity, socioeconomic sustainability, and social and
economic interactions of the three Mesopotamian regions’ populations. The earli-
est abrupt climate change occurred at 8.2 ka BP and was a two-century long global
cold and dry period, notable culturally for Anatolian and southeastern European
neolithization (Weninger & Clare, ch. 2, this volume). The impact of the 8.2 ka BP
event in Mesopotamia, apart from adaptive responses at such sites as Sabi Abyad
in the Balikh River drainage (van der Pflicht et al. 20m), can only be suggested
at this time, as little fieldwork in Mesopotamia has recently been devoted to this
period. Nevertheless, it was during this period that the enigmatic early settlement
of southern Mesopotamia occurred, to judge from the radiocarbon dates at Tell
Oueilli (Valladas, Evin, & Arnold 1996), suggesting that the two-century mega-
drought may have pushed central Mesopotamian dry farmers to the refugium
of southern irrigation-agriculture domains, the riverine area extending south of
Baghdad to the head of the Persian Gulf (Staubwasser & Weiss 2000).

The subsequent Ubaid period (ca. 6500-3800 BC) saw the growth of vil-
lages and small towns where the irrigation agriculture was controlled by small,
temple-centered, chiefdom-level societies with relatively little centralization of
agricultural surplus. Early developments in the Uruk period (ca. 4000-3000
BC) appear to mark the transition from chiefdom to state, with social stratifi-
cation and an urbanized landscape. By 3500 BC urban Late Uruk society flour-
ished in Sumer, southernmost Mesopotamia, and adjacent irrigation realms
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that extended south from the area of modern Baghdad. This early “urban
revolution” comprised Sumerian cities as large as 250 hectares, or approxi-
mately 50,000 persons (Finkbeiner 1991), sustained by high-yield cereal irriga-
tion agriculture and low-cost harvest transport via canals (Weiss 1986; Hruska
2007; Algaze 2008).

In the Late Uruk period, increasingly complex exchanges in Sumer between
urban institutional managers and their agricultural workers were recorded
in accounts rendered with numerical and pictographic notations (Nissen,
Damerow, & Englund 1993). At the same time, Late Uruk “colonists” (perhaps
long-distance traders pursuing exotic materials) continued a Middle Uruk tra-
dition of settling dispersed communities across the dry-farming plains and
plateau valleys of adjacent Iran, Anatolia, and Syria (Petrie 2014; Rothman, ed.
2001). A few northern Mesopotamian towns under dry-farming regimes seem
to have grown during this period into ca. 100 hectare, arguably urban, settle-
ments (Brustolon & Rova 2007; Oates et al. 2007), with one even growing to
300 diffuse hectares (al-Quntar et al. 20m).

These Uruk-period colonies and the few large northern settlements, how-
ever, were suddenly depopulated or abandoned at ca. 3200-3000 BC. A sim-
ilar quick retraction or consolidation occurred in southern cities and towns
(Postgate 1986). No explanation of this occurrence has been forthcoming but
for its coincidence with a severe megadrought at ca. 3200-3000 Bc/5.2—5.0 ka
BP (Weiss 2003; Charles, Pessin, & Hald 2010). Intriguing as well, but essen-
tially unexplored, is the coincidence of the megadrought and Late Uruk col-
lapse with major social and political innovations in southern Mesopotamia at
this time. Reduced Euphrates flow may have generated considerable social and
institutional stress and reinforced population agglomeration at some urban
sites (Adams 1981; Staubwasser & Weiss 2006). Among the most significant
developments was the collapse of the temple authority that regulated Ubaid
and Uruk urban society for three thousand years and its innovative replace-
ment by secular, palace-based authorities that now owned and controlled all
city-state land and agricultural production (Visicato 2000).

Precipitation rose again by 2800 Bc, and in southernmost Sumerian
Mesopotamia some cities grew to more than 300 hectares during the Early
Dynastic period (ca. 2900~2350 Bc). Judging from their temples, palaces, and
cemeteries and their highly urbanized riverine landscapes (Adams 1981), these
cities reached an apogee of regional extractive wealth accumulation by ca. 2600
BC. For uncertain reasons, Northern Mesopotamian dry-farming landscapes
did not undergo this early urban growth and remained small, dispersed vil-
lages and towns during the early third millennium—that is, the early Ninevite
5 period, ca. 2900-2600 BC (Weiss 2003).

The Second Urban Revolution

Also yet to be explained is the sudden development of large urban centers
at around 2600-2500 BC across the dry-farming landscapes of northern
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Mesopotamia and western Syria (Weiss 1990; Akkermans & Schwartz 2008).
Emulating the administrative technologies and iconographies of contempo-
rary southern Sumerian cities, many of these northern and western cities
grew to the 9o to 120 hectare range, with surrounding towns and villages,
and were arrayed evenly across the dry-farming plains. Their pattern of set-
tlement, with dependent village distributions, suggests that the cities were
located to maximize the high-yield cereal agriculture potential of the exten-
sive dry-farming plains available to them at such sites as Taya, Nineveh, and
Erbil on the Assyrian plains and Leilan, Mozan, Brak, and Hamoukar on the
Khabur Plains. To the Sumerians in the south, this region as a whole was
likely known as Subir. The region’s inhabitants, as we know from the Ebla
and Tell Beidar cuneiform archives, spoke Semitic languages and used the
southern Mesopotamian cuneiform writing system initially developed to rec-
ord Sumerian (Sallaberger & Pruss 2015). The agricultural wealth and poten-
tial of these dry-farming cities, with populations already highly organized
for agricultural production, were soon to be the target of nascent southern
Mesopotamian imperialism.

Akkadian Imperialization and Collapse

In the early 24th century BC, a period of warring among southern city-states
terminated with the ascent of one “lord of the land.” Lugalzaggisi, the king of
the city-state of Umma, emerged from decades-long battles to control many,
if not all, of Sumer’s other city-states, including Nibru, Adab, and Uruk—the
first, dozens of kilometers distant from Umma (Almamori 2014). The few
known surrounding events include Lugalzaggisi's conquest of Mari on the cen-
tral Euphrates and royal travel as far as the Mediterranean Sea.

Lugalzaggisi's rule gave way in the immediately succeeding decades to
a quantitative and qualitative leap in Sumer’s supremacy. The next ruler,
according to the Sumerian King List, was Sargon, the founder of a five-
generation Akkadian dynasty that created a capital city at Akkad (or Akkade),
likely near Sippar (but still unlocated) and spoke and wrote the early Semitic
language Akkadian. Within two generations the Akkadians embarked upon
an imperial venture that was exponentially more extensive and extractive
than envisioned by Lugalzaggisi’s “lord of the land.” At ca. 2200 Bc, only
about one hundred years after its launch and full-blown development, this
first imperial effort, the Akkadian Empire, was truncated by natural forces
at the 4.2 ka BP megadrought. Yet in spite of, or even perhaps because of,
this abrupt rupture, Akkadian imperial successes and ideology were emu-
lated and venerated by succeeding empires for the next thousand years.
Epigraphic and archaeological data document three stages in the establish-
ment of Akkadian imperial power, marked by the rules of Sargon, his sons
Rimush and Manishtushu, and his grandson Naram-Sin, dated in Table 3.1
using the “Middle Chronology,” with a range of ca. 6o years (Sallaberger &
Schrakamp 2015).
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TABLE 3.1 Stages of Akkadian Imperial Power

Stage 1 Sargon (ca. 23242285 Bc) extended the united realm from Akkad
in the north to Ur in the south—ca. 5000 square kilometers—
and embarked upon a series of long-distance conquests up the
Euphrates, to Mari, Tuttul, and Ebla, respectively ca. 500, 700,
and goo kms distant). This was a departure from regional south-
ern Mesopotamian city conquest, and a qualitative leap from both
Marfs and Ebla’s more limited efforts towards regional hegemony.
Little apparent state building followed Sargon’s conquests: with
no controlling fortresses left in the conquered cities, they provided
only the “primitive”, immediate, acquisition of plunder.

Stage 2 Rimush and Manishtushu (ca. 2284-2262 Bc), in short order,
extended Akkadian imperial power into northern Mesopotamia.
This stage marks the beginning of Akkadian designs on the
dry-farming cities of the north, at Tell Brak, Nineveh, and Tell
Leilan—where the earliest Akkadian texts of the Khabur Plains
were retrieved within an enigmatic Akkadian scribal room (deLil-
lis Forrest et al. 2007).

Stage 3 Naram-Sin (ca. 2261-2206 Bc), Sargon’s grandson, took another
qualitative leap, conquering the urbanized landscapes of adjacent
dry-farming regions in southwestern Iran, northeastern Iraq,
and northeastern Syria. The most detailed examples of this con-
quest and imperialization process have been retrieved recently
on the Khabur Plains, where the Akkadians installed themselves
within palace fortresses at Leilan, Mozan, and Brak and ruled the
dry-farming lands extending north across Mesopotamia to Taya,
Nineveh, Awal, and Gasur/Kirkuk and east to Susa. Henceforth,
the Akkadians extracted and deployed revenues from both the
rain-fed and the irrigation-agriculture regions of Mesopotamia.
This imperialization across Mesopotamia, recorded in Akkadian
provincial archives (see, for example, Visicato 1999; Foster 1982;
Brumfield 2013), also marked the deployment of a new imperial
metrology in the collection of both raw commodities and finished
products (Glassner 1986; Powell 1990) as well as land surveying
and agrimensorial innovations (Foster 2011; Hoyrup 20mu).

In southern Mesopotamia the Akkadians created enormous new estates
from domains seized or purchased, and then extracted revenues for the
empire’s administrators and elite officialdom and for imperial projects,
such as new temple construction and maintenance of the empire’s armies
(Westenholz 1987, 1999). The large imperial revenues were dispatched to
the capital by water transport: as one record attests, tow barges from south-
ern Adab were loaded with 885,000 liters, or about 539 metric tons, of barley
(Maiocchi 2009: 78).

98 | Harvey Weiss



The revenues of the northern dry-farming areas were gathered and retrieved
from imperialized regional cities, a deployment made possible in no small part
by the state’s ability to exploit a large, dependent labor force. At Gasur, near
Kirkuk, for instance, agricultural workers were provided with barley rations (3e-
ba) for their agricultural labor, while estate harvests were directed, as in the
south, to the local Akkadian administration (Foster 1982), where skilled artisans,
as well as dependent and levied labor, were compensated with rations measured
to imperial standards (Westenholz 1987). On the Khabur Plains, an Akkadian
bulla retrieved from a small, 5-hectare town at Chagar Bazar, alongside the now
dry wadi Khanzir, likely records the water-borne transport of as much as 160 gur,
or 379 metric tons, of emmer (Chagar Bazar A. 391, Brumfield 2.012). One impe-
rial Akkadian account records more than 45,000 liters, or over 30 metric tons,
of barley and emmer, probably transported by river from 50-hectare Nagar/Tell
Brak, on the Khabur Plains, to Sippar near Baghdad (Sommerfeld, Archi, &
Weiss 2004; cf. Englund 2015) In the dry-farming areas, imperial targets were
the urban-dominated agricultural landscapes, which comprised a pre-adapta-
tion for Akkadian imperialism. Northern imperialization targets, other than
cereal production, are difficult to identify, since the northern plains lack other
extractable resources and the Akkadian imperial fortresses did not extend to
the adjacent Anatolian and Iranian plateaus’ potential precious metal sources—
even though silver and cedar were famously retrieved from the Amanus moun-
tains far to the northwest. In fact, the Akkadians ignored the Hakkari sources
on the plateau and obtained their copper from Oman and Kerman (Potts 2007).

The 4.2 ka BP Megadrought

In the midst of imperial success and expansionary activity, at ca. 2230 Bc in the
Leilan radiocarbon chronology, probably in the reign of Shar-kali-sharri, Naram-
Sin’s son and successor, the abrupt onset of the 4.2 ka BP global megadrought
desiccated the dry-farming agricultural landscape of the Mediterranean, West
Asia, and northern Mesopotamia with 30-50 percent precipitation reductions
and colder temperatures. The chronology and global extent of this abrupt climate
change are now well documented and frame the collapse of the Akkadian Empire.

Much has been gleaned about the 4.2 ka BP event from climate science,
which traces the direction and intensity of the cyclonic North Atlantic west-
erlies that are controlled by the North Atlantic Oscillation (Kushnir & Stein
2010; Cullen et al. 2002) and delivered through the Mediterranean trough
to West Asia (Lionello, Malanotte-Rizzoli, & Boscolo 2013). The North
Atlantic Oscillation’s boundaries are reflected in abundant and synchronous
Mediterranean westerlies proxy records and the yet inexplicably linked Indian
Monsoon paleoclimate proxy records that are plotted in figure 3.2 within the
winter season moisture transport. Two high-resolution data sets define the 4.2
ka BP event's chronology and magnitude: (1) Icelandic lake sediment records
(Geirsdéttir et al. 2013; Blair, Geirsdéttir, & Miller 2015), and (2) a Greenland
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lake-sediment record linked to the North Atlantic Oscillation-index and derived
from tree-ring and speleothem records (Olsen, Anderson, & Knudsen 2012).

Most of these paleoclimate proxies document the 4.2—3.9 ka BP abrupt cli-
mate change, but some anomalous records exist. These anomalies include Jeita
Cave, Lebanon (54), surrounded by prominent 4.2 ka BP event proxies, Sofular
Cave (110) at the Black Sea, the only Anatolian region that receives precipi-
tation throughout the year, Qunf Cave (77) in the Intertropical Convergence
Zone, and Lake Bosumtwi (86), situated between the well-documented 4.2 ka
BP event proxies at Lake Yoa (76) and the Gulf of Guinea (96). A few older,
low-resolution proxies also do not display the 4.2 ka BP event, among them
Bouara, Syria (53), where there may be an analysis error, and the older Greek
proxy records surrounded by new high-resolution speleothem and marine
core records, such as the Alepotrypa cave speleothem on the Peloponnese (114).
A few Anatolian lake proxies, such as S6giitlis Marsh (31) and the poorly dated
Eski Acigdl core (33) also miss the event, though they are surrounded by recent
high-resolution Anatolian proxies with prominent 4.2 ka BP event proxy excur-
sions, such as Nar Lake (12) and Gulf of Gemlik (113) and the high-resolution
speleothem core at -Gol-e Zard, Iran (11). The 4.2 ka BP event Mediterranean
westerlies proxies, usually “C and U-Th isotope dated, extend across the seven
sub-regions in Table 3.2 and are listed by number in the Appendix.

The 4.2—3.9 ka BP event is now well documented in East African and Indus
paleoclimate proxies (fig. 3.2), which detail synchronous abrupt alterations for both
Nile flow and Indus precipitation and river flow, functions of the Indian Monsoon
as it passes across the Arabian Sea between the sub-continent and the Horn of
Africa. Marine, lake, and speleothem cores indicate that the 4.2 ka BP event dis-
ruption of the Indian Monsoon (Berkelhammer et al. 2012; Dixit, Hoddell, & Petrie
2014; Prasad et al. 2014) was approximately coincident with disrupted Harappan
urbanization along the Indus River, though temporal details await refinement
(Ponton et al. 2012), while mitigating cropping strategies may have prevailed in
dry-farming regions (Petrie et al. 2016). The weakening of the Indian Monsoon
also diminished northeast African precipitation (Marshall et al. 201; Revel et al.
2014; Davis & Thompson 2006) and consequent Nile flow (Blanchet et al. 2013;
Hassan & Tassie 2006; Bernhardt, Horton, & Stanley 2012; Welc & Marks 2014;
Revel et al. 2014), coincident with the collapse of the Old Kingdom in Egypt and
introduction of the First Intermediate Period (Ramsey et al. 2010).

In Africa, West African and Saharan precipitation were also disrupted
(Marchant & Hooghiemstra 2004), as at Lake Yoa (76) and Jikariya Lake (81)—
an aridification and dust event that terminated the African Humid Period
(Lézine 2009) and likely created the sources of synchronous African dust in
Tuscany (17). The same megadrought event is observed in central West African
lake cores (9o) and Gulf of Guinea marine cores (96). North to south, the
event is recorded from coastal Algeria (95) to the 30-degree latitude in south-
ern Africa (Chase et al. 2010; Schefuss et al. 20m).

The abundant West Asian proxy records are also linked to central Asia, the
Himalayas (Nakamura et al. 2016), and Mongolia (Yang et al. 2015). In southeastern
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TABLE 3.2 Mediterranean Westerlies 4.2 ka BP event paleoclimate proxy records.
(Numbers refer to figure 3.2 and the Appendix.)

Coastal Spain and France
Dofiana National Park (97): Sierra de Gador (47); Cova da Arcoia (15); Borreguiles de la
Virgen (44); Lake Montcortes (16); Puerto de Mazzarén (38); Lac Petit (9). !

Ceniral Mediterranean Italian lakes
Lago di Pergusa (39); Bucca della Renella (10); Lago Alimini Piccolo (27); Maar lakes
(7); Lake Accessa (13); Lago Preolo (36); Corchia Cave ().

Greece and the Balkans

Lake Lerna (37); Osmananga Lagoon (Pylos) (45); Lake Vrana (7); Lake Prespa

(98): Leng et al. 2010; Lake Shkodra (18); Lake Ohrid (21); Lake Dojran (19); Aegean
Sea (35); Kos basin, south Aegean Sea (48); Kotychi Lagoon (99): Haenssler et al. 2014;
Rezina Marsh (28); Gramousti Lake (29).

Levant and Red Sea

Acre (100): Kaniewski et al. 2014; Tweini (52); Dead Sea (60); Zeelim, Dead Sea;
Sedom, Dead Sea; Soreq Cave (58); Shaban Deep (68); northern Red Sea and Gulf of
Aqaba (65); central Red Sea (75); Lake Hula (55); Jeita Cava (54); Ghab Valley (51); Tell
Mardikh (49).

Anatolian plateau and northern Mesopotamia

Konya lakes (40); G6l Hissar Golil (43); Eski Agigol (33); Kogain Cave (101): Goktiirk
201; Abant Golil (23); Yenigaga Golii (22); Sogutlu Marsh (31); Nar Lake (112); Lake
Iznik (24); Kaz Golii (25); Gulf of Gemlik (113); Yenigehir (26); Arslantepe (34); Gobekli
Tepe (41); Lake Van (32); Lake Tecer (30); Tell Leilan (46).

Persian Gulf
Gulf of Oman (72); Awafi (69); Qunf Cave (77).

Black Sea, Caspian Sea, Iranian Plateau
Lake Zeribar (50); Lake Mirabad (56); Lake Maharlu (63); Black Sea (8); Sofular Cave
(110); Caspian Sea (20); southeastern Caspian Sea (42); Gol-e Zard Cave ().

Tibet, millet crop agriculture persisted to 4.2 ka BP, when drier and colder condi-
tions forced regional settlement abandonment until the adoption of wheat-barley
agriculture ca. 3.5 ka BP, while the arrival of wheat and barley ca. 4 ka BP on
the northeastern Tibetan plateau allowed for uninterrupted occupation (d’Alpoim
Guedes et al. 2016; Wang et al. 2015). In eastern China, numerous 4.2-3.9 ka BP
records document East Asian Monsoon instabilities that disturbed late Neolithic
settlement systems (Cai et al. 2010; Donges et al. 2015; Dykoski et al. 2005; Liu and
Feng 2012; Lu et al 2015) and extended to interruption of the Indonesian-Australian
Summer Monsoon (Rosenthal, Linskey & Oppo 2013; Deniston et al. 2013).

In North America, seven glacial, speleothem, and lake-core proxy records
of the event cross the continent from New Jersey to the Yukon (Dean 1997;
Zhang & Hebda 2005; Booth et al. 2005; Li, Yu, & Kodama 2007; Fisher 201;
Hardt et al. 2010; Menounos et al. 2008). Additionally, now available is the
annual-resolution Great Basin tree-ring record (Salzer et al. 2014), which
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documents the 4.2 ka BP event at the introduction of maize agriculture to the
US southwest (Merrill et al. 2009) and the Yucatan (Torrescano-Valle & Islebe
2015). In South America, the well-known glacial record (Davis & Thompson
2000) is now supplemented with other Andean proxy records (Baker et al.
2009; Licciardi et al. 2006, 2009; Schittek et al. 2015) to suggest a causal
linkage between 4.2 ka BP and the poorly understood rise and fall of contem-
porary Peruvian Late Pre-ceramic cities (Sandweiss et al. 2009). 4.2 ka BP
proxy records extend southwards to 44° S in Chilean Patagonia (dePorras et al.
2014) and Antarctic glacial cores (Peck et al. 2015).

The Multi-Proxy Stack

The multi-proxy stack (fig. 3.3) portrays several currently available high- to
low-chronological resolution paleoclimate proxies at 4.2—3.9 ka BP across the
Mediterranean and West Asia (Weiss et al. 2012; Walker et al. 2012). Linear
interpolation across uranium-thorium (U/Th) or radiocarbon (4C) dated points
is provided for measured quantities of precipitation and temperature proxies,
such as stable isotopes, arboreal and other pollen, diatoms, carbonates, lake lev-
els, and magnetic susceptibility. The ranges of chronological resolution in each
record are reproduced here within two standard deviations around 4.2—3.9 ka
BP. The standard deviation bars illustrate two important qualities of the 4.2 ka
BP paleoclimate record. First, the dating is quite variable, extending from very
low to very high resolution. Second, chronological resolution is dependent not
only upon sampling and dating intervals, but on the standard deviation of the
radiometric datings. For comparative purposes, the coincident high-resolution
proxies at Mawmluh Cave (Berkelhammer et al. 2012) and Mount Logan (Fisher
20m) represent global records of the 4.2 ka BP event (Walker et al. 2012).

At Lac Petit, France, in the southern Alps, an abrupt detrital pulse trig-
gered by more intense or more frequent rainfall marks a major shift in diatom
assemblages at 4300—4100 Bc, according to #C dating (Brisset et al. 2013). The
Kocain Cave, Turkey, speleothem (Goktiirk 2011) provides high-resolution U/
Th dates that constrain abrupt decreases and increases of %0 (oxygen isotope
ratio). The Eski Acigél, Turkey, lake core (Roberts et al. 2001) has no radiocar-
bon dates during a rise in lake-core charcoal misinterpreted as anthropogenic
deforestation (Turner, Roberts, & Jones 2008), while the Gol Hissar, Turkey,
lake-core carbonate spike and rise in 80 are framed by radiocarbon dates
2000 years apart (Eastwood et al. 2007). The Lake Van, Turkey, core (Lemcke
& Sturm 1997) displays a quartz spike understood as a dust proxy and is dated
by varve counts with slight errors (see Kuzucuoglu et al. 2011). The dense sam-
pling intervals for the Soreq Cave, Israel, speleothem (Bar-Matthews & Ayalon
20m) §%0 and 83C values are linked to U/Th dates, but with large standard
deviations and, therefore, a labile chronology. The Dead Sea lake levels (Kagan
et al 2015; Litt et al. 2012; Migowski et al. 20006) are estimated to have dropped
abruptly by 45 meters at ca. 4.2 ka BP (see Frumkin 2009). At the Red Sea
Shaban Deep core (Arz, Lamy, & Pitzold 2000), 15-year diatom sampling
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intervals are constrained by high-resolution radiocarbon dates with a marine
reservoir correction (see Edelman-Furstenberg, Almogi-Labin, & Hemleben
2009). The Gulf of Oman marine core (Cullen et al. 2000) has dolomite and
calcium carbonate (dust) spikes framed by “C dates and is tephra-linked to Tell
Leilan chronostratigraphy (Weiss et al. 1993).

The Mawmluh Cave, India, speleothem (Berkelhammer et al. 2012) pro-
vides G-year 6®0 sampling intervals constrained with U/Th dates and links the
Nile flow reductions (see Hassan & Tassie 2006; Bernhardt, Horton, & Stanley
2012), east African lake-level reductions (see Gasse 2000), and the Indian
Summer Monsoon deflection (see Dixit, Hodell, & Petrie 2014). The Mount
Logan, Yukon, glacial core (Fisher 20u) is cross-dated with the NorthGRIP-
core and dated tephra records and exemplifies the 4.2 ka BP event’s North
American expression, second in magnitude to the 8.2 ka BP event. Illustrative
of the abrupt climate-change synchronicity in the Mediterranean are the Lac
Petit, France, core (9), and other recent and adjacent cores in Spain, Lake
Shkodra, Albania (18), Lake Accessa, Italy (13), and Acre, Israel (100), dated ca.
4.2-3.9 ka BP, or, in some cases, at lower resolution, ca. 4.3-3.8 ka BP (see
Figure 3.2, Table 3.2, and Appendix 3.1).

Effects of the 4.2 ka BP Megadrought

The effects of the global 4.2 ka BP abrupt climate change varied regionally
and climatically, of course, and the integration of these extensive data com-
prises a major new research task. In West Asia and northern Mesopotamia,
the dry-farming areas contracted when precipitation dropped 30~50 percent
at ca. 4.2 ka BP (Bar-Matthews & Ayalon 2011; Frumkin 2009; Staubwasser &
Weiss 2006: 380-382, figs. 4—6.) Regional aggregate cereal yields plum-
meted, and most of the Khabur Plains of northeastern Syria fell below the
minimal 200-300 millometer isohyet necessary for dry farming (fig. 3.4).
Similar drought conditions prevailed across the Mediterranean, western
Syria, and northern Iraq, regions in which precipitation was a function of the
same Mediterranean westerlies, and paleoclimate records indicate that the
megadrought extended across the Mediterranean to Anatolia, the proximate
source of northern Mesopotamian winter precipitation.

The Akkadian Empire’s investment in the conquest, control, and manipula-
tion of northern Mesopotamia had included a standing army, weaponry, and a
hierarchy of administrators, scribes, surveyors, craft specialists, and transport
personnel across a territory of roughly 30,000 square kilometers. This imperial
system had proven both sustainable and profitable for about one hundred years
(Ristvet 2012). The megadrought, however, eliminated dry-farming cereal cultiva-
tion across the Khabur Plains and the north Mesopotamian and Syrian plains to
the east as well as the west. The flow of northern imperial agricultural and fin-
ished product levies to provincial centers and to the Akkadian capital terminated.

The effects of a 30-50 percent reduction in Tigris-Euphrates flow upon
southern Akkadian agriculture can only be estimated. Although the flow always
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seems to have exceeded the demands of irrigation agriculture, such a reduc-
tion would have substantially diminished canal extent and irrigated field areas.
At the onset of the megadrought, with reduced Euphrates flow, aggregate
Akkadian yields likely fell precipitously. In the course of the megadrought flow
reduction, the successor Ur III state redesigned canal systems into linear paths
in an attempt to counter channel meandering (Adams 1981: 164). However, in
spite of considerable epigraphic documentation for southern Akkadian and Ur
I1I agriculture, it has not yet proven possible to convincingly compare Akkadian
and Ur III period agricultural production (van de Mieroop 1999: 125).
Although its economy remains to be quantified, the Empire’s collapse
was swift. That the capital city, Akkad, has neither been located nor excavated
remains a central challenge to our understanding of events in the Akkadian
heartland, but the extant cuneiform record is itself graphic in this instance.
“Who was king, who was not king?” records the Sumerian King List, perhaps
written at the time or shortly thereafter, when “Akkade was defeated and king-
ship was taken to Uruk” (Black et al. 2004). The “Curse of Akkade” poetically
describes the populace’s drought-stricken wails when food was scarce and the
“canal bank tow-paths’ grass grew long,” trailed by the invading Gutian moun-
tain neighbors, “with the brains of dogs and the faces of apes,” who were brought
by divine force to conquer Akkad (Cooper 1983; Black et al. 2004). A series of
petty kings followed. Ur III dynasty successors would rule irrigation-agriculture
southern Mesopotamia for a hundred years, but they never reclaimed the aban-
doned, drought-stricken northern realms. Three hundred and fifty years after
the collapse, the fall of Akkad was still an exalted event (Grayson 1987: 53). The
collapse of the Empire is unquestioned; nevertheless, its demise was ecologi-
cally more complicated than “The Fall of Akkad” epigrammatically suggests.

Ecological Variability of Collapse

Adaptive responses to megadrought varied within the ecological zones across
West Asia, the dry-farming zone, the riverine irrigation-agriculture zones, and
the semi-arid steppe. In the dry-farming zone, the 30—50 percent reduction
in precipitation made dry-farming impossible, and region-wide site abandon-
ments quickly followed. These abandonments are most visible now in the exca-
vated sites and regional surveys on the Khabur Plains of northeastern Syria and
in the plains of southwestern Turkey, western Syria, and the Levant (fig. 3.4).

Khabur Plains

The collapsed Akkadian Empire’s abandonment of the Khabur Plains was swift
and sudden, and most of the indigenous regional population departed with the
Akkadians. Three major urban settlements—Brak, Leilan, and Hamoukar—
and their surrounding towns and villages were abandoned synchronously
and completely, while a fourth major settlement at Mozan was 8o percent
deserted (Buccellatti & Buccellatti 2000; Pfilzner 2012). These Khabur Plains
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FIGURE 3.5 Clay balls for tablet manufacture; uninscribed clay tablets, cereal
storage jar, and basalt 2-liter ration measure, abandoned on Room 12 floor, terminal
occupation, Akkadian Administrative Building, Tell Leilan, end period 11bi;; AMS
radiocarbon dated 22542220 Bc (68.2 percent) (H. Weiss)

abandonments included the cities’ lower town areas, which were each probably
populated by upwards of 20,000 indigenous agricultural workers.

The Unfinished Buildings on the Khabur Plains

In three instances, major building projects were abandoned in mid-
construction. “The Unfinished Buildings” included the Akkadians’ Naram-Sin
fortress at Tell Brak, a gateway city at the southern edge of the Khabur Plains.
This massive structure was probably intended to serve as a regional grain store,
but it was abandoned with unfinished floors and walls, stamped “Naram-Sin”
on their lower course bricks (Mallowan 1947).

At Tell Leilan, in the heart of the eastern Khabur Plains, about a hun-
dred years of large-scale grain storage, processing, and redistribution took
place in the Akkadian Administrative Building on the Leilan Acropolis. The
Akkadians suddenly departed at ca. 2230 8¢, however, leaving clay balls for
tablet manufacture, uninscribed clay tablets, a large storage vessel, and a
2-liter ground basalt measure on the terminal room 12 floor (fig. 3.5). Across
the stone-paved street, The Unfinished Building at Tell Leilan had rough-
dressed basalt block walls yet without brick, and some walls still only three
or four courses high upon a mud-set sherd layer (fig. 3.6). A semi-circle of
partially dressed blocks awaited finishing and wall placement and a line of
basalt blocks extended west to the edge of the Leilan Acropolis. At its deser-
tion, the string-impressed clay sealing of the imperial Akkadian minister,
“Haya-abum, $abra” (L93-66; fig. 3.7), was left on The Unfinished Building
construction surface (Weiss et al. 2012; McCarthy 2012).
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F1GURE 3.6 Tell Leilan 1999, The Unfinished Building, 44W16 south stratigraphic
section: Period Ila razed brick wall, Period IIbi incomplete line of dressed basalt
blocks, mud pack, sherd layer, and four courses of calcic horizon mudbrick. Modern

village pit halted at calcic horizon mudbrick. (H. Weiss)

r1cURE 3.7 Tell Leilan 1993, object 66, 44W1s, southern Mesopotamian imperial
Akkadian seal-impression fragment with inscription “Hayabum, shabra,” retrieved
from working floor of The Unfinished Building at corner of north and west basalt

block walls. Reverse: string impressions. (H. Weiss)



FIGURE 3.8 Post-Akkadian four-room house built around a courtyard, Tell Leilan
period Ilc, AMS radiocarbon dated 2233-2196 Bc (68.2 percent). The house was
occupied briefly after the Leilan period IIb Akkadian site abandonment and is the only
post-Akkadian occupation located at Tell Leilan to date. (H. Weiss)

Two similar but fragmentary buildings were abandoned mid-construction at
Tell Mohammed Diyab, eight kilometers east of Tell Leilan (Nicolle 2006: 64,133).
Taken together, The Unfinished Buildings at Tell Brak, Leilan, and Mohammed
Diyab document patterns of both imperial success and expansionary designs up
to the very moment of the administrators’ decision to abandon the Khabur Plains.

Post-Akkadian Settlement on the Khabur Plains

Following the abandonments, residential and very short-term post-Akkadian
occupations are known from excavations at four sites—Brak, Leilan, Arbid, and
Chagar Bazar—each of which terminated at ca. 2200 B, as determined by high-
resolution AMS radiocarbon dating (see fig. 3.8; Weiss et al. 2012: 175). Similarly,
the Leilan Region Survey, a 1650 square kilometer transect through the center
of the eastern Khabur Plains, documents an 87 percent reduction in settled
area at the termination of Akkadian imperialization in the post-Akkadian Leilan
I1c period (ca. 2230—2200 Bc). This brief remnant occupation was followed by
an approximately 250-year abandonment of the region, until the return of pre-
megadrought precipitation (fig. 3.9; Arrivabeni 2012; Colantoni 2012).

Dry-farming Western Syria, Turkey, the Levant, and the Aegean

Distant from direct Akkadian imperialization, the dry-farming plains of the
upper Euphrates drainage near Urfa and Harran in Turkey, including urban
sites with cities such as Tilbegar, Titrig and Kazane, were similarly abandoned
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FIGURE 3.9 Leilan Region Survey (1650 sq km) histogram of total settlement
hectares/period spans. The end period IIb Akkadian collapse reduced post-Akkadian
period Ilc settlement by 87 percent at ca. 2230 Bc, and by 100 percent at ca. 2200

BC. Major resettlement by formerly pastoralist Amorite populations (Khabur period
occupations) is evident by ca. 1950 Bc. (M. Arrivabeni, L. Ristvet, E. Rova, & H. Weiss).

at 2200 BC. In western Syria, south of Aleppo, the rebuilt Early Bronze IVB
city at Ebla was reduced in size, while its Archaic Palace, singularly fitted with
water cisterns, remained unfinished like The Unfinished Buildings at Leilan
and Brak and Mohammed Diyab (Matthiae 2013). On the Jabbul Plain, the 20-
hectare town at Umm el-Marra was abandoned suddenly (Schwartz et al. 2012),
along with Rawda and its environs further south in the semi-arid marginal
steppe (Brochier in press; Barge, Castel & Brochier 2014). Synchronous and
similar scale abandonments occurred across the dry-farming southern Levant
(Haiman 1996; D’Andrea 2012; Harrison 2012; Finkelstein & Langgut 2014),
Anatolia (Boyer, Roberts, & Baird 2000), the eastern Mediterranean (Weiberg
& Finné 2013; Davis 2013; Weiss 2000: 89—90), and as far east as Turkmenistan
(P’yankova 1994). In addition to regional abandonments, Anatolian excavations
document conflagration and inter-settlement conflict among the social forces
unleashed within the megadrought (Massa 2014; Massa & Sahoglu 2015).

Riverine Refugia: The Euphrates and Orontes Rivers

In western Syria (fig. 3.10), the karst-fed Orontes River system encompassing the
Ghab valley swamp and the Amugq Plain (Votite 1961) was the habitat-tracking
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target that attracted and sustained large agricultural populations at such new
urban sites as Qatna, Nasriyah, and Acharné (al-Maqdissi 2010; Yener 2005;
Morandi Bonacossi 2009). To the west of this karst plateau, along the fertile lit-
toral, springs provided for the town at Tell Arqa and its villages and Tell Sukas.
Meanwhile, Ugarit and Byblos, lacking karstic springs, were subject to popula-
tion reductions and site abandonments (Weiss 2014). In the southern Levant, the
period 111d settlement at Tell es-Sultan/Jericho provides an illuminating exam-
ple of a karstic spring refugium for sedentarizing pastoralists (Nigro 2013), and
walled Khirbet Iskander continued to be occupied because of its location along a
major perennial wadi (Cordova & Long 2010).

Euphrates River flow during this period, though diminished, still provided
for irrigation agriculture in central and southern Mesopotamia. Hence, habitat
tracking from desiccated dry-farming areas to irrigation agriculture Euphrates
and Orontes River refugia was the adaptive response of dry-farming agricul-
turalists and Hanaean/Amorite pastoralists (Coope 1979; Eldredge 1985). In
southern Mesopotamia, this population movement and its subsequent pop-
ulation doubling within a century generated the hypertrophic Ur III dynasty
cities aligned along the Euphrates River (Adams 1981). Urban settlement also
flourished and expanded during this post-Akkadian shakkanaku-period at
such central Euphrates cities as Mari, Terqa, Tuttul, Emar, Carchemish, and
Samsat (Butterlin 2007).

As noted, we lack the data with which to understand the effects of mega-
drought onset upon the Akkadian imperial agricultural economy in southern
Mesopotamia. Euphrates flow alone is estimated to sustain irrigation for an area
of 8000 square kilometers (Adams 1981) and a total Tigris-Euphrates flow suffi-
cient to irrigate 30,000 square kilometers (Wilkinson 2003: 76). The extent and
size distribution of Akkadian and Ur III period settlement, however, remains
uncertain, since diagnostic ceramic indicators have been revised, along with epi-
graphic reconstructions of settlement areas. Estimates of southern Akkadian
harvest are therefore not available. Estimates of aggregate Ur III cultivated area
do seem nearly attainable (Nissen, Damerow, & Englund 1994: 142) given the
extensive data available for Ur III shipments of, for instance, 30 tons of bar-
ley to Nippur (Sharlach 2004: 329). However, we do not know if, or to what
extent, these aggregate data resulted from early Ur III attempts to straighten
the Euphrates and Tigris meanders, likely generated by 4.2 ka BP/terminal
Akkadian reduced river flow (Adams 1981: 164). We may perhaps assume that
cereal yield per unit cultivated (Postgate 1984; Maekawa 1984) would not have
been affected and that the straightening of Ur I1I canals could have corrected for
potential aggregate yield reductions. Irresolvable, given present data constraints,
is the significance of northern dry-farming exports for the wealth and resilience
of the southern imperial economy. We cannot quantify the truncation at 2200 BcC
from either the north or the south from the epigraphic documentation for south-
ern grain imperialization. Its effect was, nevertheless, real, and the constrained
successor southern states did not imperialize the desiccated northern domains.
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The Steppe and Jebel Bishri

The steppe, with its 100-300 millimeters precipitation per annum, separates
the dry-farming northern plains from the irrigation-agriculture south and

provided for the base and transit camps of seasonal flock-foraging Hanaean/

Amorite sheep-goat pastoralists. In the epigraphic and archaeological records,

it is the mountainous Jebel Bishri region, in the steppe south of the Euphrates

River, that features as a prominent pastoral nomad landmark, a nexus from

which regional nomadization seems to have occurred in three phases.

The first phase of nomadization, at the onset of megadrought, was the inter-
ruption of seasonal pastoralist transhumance between the Euphrates River
and the Khabur Plains. The drought would have rendered the Khabur Plains
inhospitable to seasonal flock forage, forcing pastoralists into the steppe and
the adjacent banks of the Euphrates, and then into southern Mesopotamia for
Euphrates-fed foraging. Epigraphic documentation for this period of noma-
dization remains scant, of course, but the impressive tomb cemeteries at the
Jebel Bishri point to Amorite pastoral populations (Ohnuma 2010).

The second phase was marked by the construction in southern Mesopotamia
of city walls, such as “The Repeller of the Amorites Wall” in the Ur III period,
intended to thwart the steppe nomads (Gasche 1990; Sallaberger 2009). The
walls proved essentially porous and futile, as the pastoralist presence would
only increase.

In the third phase of nomadization, the sedentarized pastoralists emerge
as the controlling dynasts of southern Mesopotamian cities (Finkelstein 1966)
and, with the opportunistic resettlement ca. 1950 Bc that accompanied a return
of pre-4.2 ka BP precipitation, undergo sedentarization in the north as well
(Heimpel 2003; Ristvet 2008). It was this process that led to the ascent of
Shamshi-Adad I and his Amorite kingdom in Upper Mesopotamia, with new
capital cities at Ekallatum and Shubat Enlil (Weiss et al. 2012; Ristvet & Weiss
2013; fig. 3.11).

Steppic nomadization remains difficult to quantify, but is nevertheless
evident in the Jebel Bishri cemeteries and in the detailed epigraphic record.
Significantly, pastoral nomad excursions beyond Jebel Bishri-based camps
forced Aramaean-Assyrian conflicts in the twelfth to ninth centuries BC, dur-
ing the 3.2 ka BP aridification event (Postgate 1992; Kirleis & Herles 2007;
Pappi 20006). In the cross-cultural archaeological record, nomadization is evi-
dent as a drought response to the conclusion of the African Humid Period
in central and southwestern Sahara (Manning & Timpson 2014) and to the
Tiwanaku collapse in Bolivia (Dillehay & Kolata 2004).

Conclusions

The causal weight of the global 4.2—3.9 ka BP megadrought in the regional
abandonments, collapses, habitat tracking, and nomadization of West Asia
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FIGURE 3.11 Tell Leilan, Acropolis Northeast, Period I, Building Level IT temple, north
fagade, erected during the reign of Shamshi-Adad and his successors, ca. 1850-1725
BC. After the pastoralists’ resettlement of the Khabur Plains, beginning ca. 1950 s,
the region would be transformed into Shamshi-Adad’s north Mesopotamian kingdom,
with a capital city, Shubat Enlil, at Tell Leilan (H. Weiss).

is clear, placing the Akkadian imperial collapse within a regional and global
frame of abrupt climate change that crossed both ecological zones and conti-
nents. Counterfactually, these synchronous West Asian and adjacent collapse
and abandonment events and processes would not have occurred without the
4.2 ka BP megadrought.

Five objections to these data and analyses may be noted here. Karl Butzer
(2012) dismissed the 4.2-3.9 ka BP event paleoclimate proxies, regional and
global, as uncertain and uncertainly dated. In contradiction of the archaeolog-
ical and epigraphic records, and the high-resolution radiocarbon dating of the
Khabur region Akkadian imperialization and abandonments, Butzer believed
the apparent widespread decline is rooted in the fact that Akkadian imperial-
ization under Sargon and Naram-Sin destroyed the cities of western Syria and
thereby destroyed an interlinked world economy of urban societies and trade
networks from the Aegean to the Indus. Unfortunately, Butzer’s version of late
third millennium history misdates the collapse by about 150 years in south-
ern Mesopotamia, on the Khabur Plains, across western Syria, and across the
Mediterranean and ignores the famous Akkadian long-distance trade that even
brought boats filled with exotic goods from as far as the Indus Valley to the
Akkadian capital.
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Neil Roberts et al. (201) argue that successful urban adaptations during
this period disprove the “environmental determinism” of those who quantify
the regional abandonments caused by the megadrought’s effects upon rainfed
and irrigation-agriculture production. Yet the sites purported by Roberts et al.
to be successful urban adaptations, such as Brak and Rawda, either famously
did collapse or were located in riparian and karstic refugia, such as Mari on the
Euphrates River and Qatna along the Orontes River basin. Similarly, Glenn
Schwartz (2007) imagines an isotropic, uniform landscape across Syria,
thereby missing the region’s hydrologic variability, and also mistakes 4.2-3.9
ka BP habitat tracking to riparian Orontes and Euphrates refugia for evidence
of stable population centers.

Tony Wilkinson et al. (2007) have hypothesized that the agricultural econo-
mies of the Mesopotamian dry-farming zone were “brittle” and susceptible to
collapse during brief arid “spells” like those of the instrumental record. The
independent urban economies of northern Mesopotamia thrived, however, for
almost 300 years without collapse before the Akkadians targeted their suc-
cess, extracted still greater agricultural surplus for an additional 100 years, and
planned further imperial expansion, until the well-documented megadrought
made regional dry-farming impossible.

According to another recent disclaimer, the major Khabur Plains cities of
Brak, Hamoukar, and Leilan collapsed at different times during the late third
millennium BC and for different reasons (Ur 2015). The argument goes that the
climate of northern Mesopotamia “[m]ore likely . . . experienced a gradual aridifi-
cation” (p. 85), and that the farmers of Brak and Hamoukar were able to forestall
disaster—unlike their singularly imperialized neighbors in Leilan—by fertilizing
their fields with organic domestic refuse that included broken household pottery.
Thus, while Leilan was abandoned ca. 2200 Bc, Brak and Hamoukar apparently
remained occupied. Ur’s argument ignores the wealth of global, high-resolution
paleoclimate records for the 4.2 ka BP megadrought’s abruptness, magnitude,
and duration, which distinguish the global event from the modern instrumental
drought record for West Asia (Weiss 2012; Weiss et al 2012). Instead, Ur deems
relevant an explicitly discounted idea (Weiss et al. 1993) that the megadrought
was a product of volcanism and an improbable link between Leilan and Brak pre-
Akkadian destruction debris and an extra-terrestrial event (Courty 2001).

The evidence for Ur’s hypothesis that Leilan farmers did not fertilize their
fields while Brak and Hamoukar farmers did is the relatively limited density
of off-site sherd scatters at Leilan (Ristvet 2005) compared to Ur’s off-site col-
lections at Brak and Hamoukar. The off-site sherd scatters are hypothesized
to be late third millennium BC residues from household manures mixed
with potsherds. The sherd-scatter-as-remnant-manure hypothesis has been
disconfirmed repeatedly, however (Alcock, Cherry & Davis 1994; Wilkinson
1990: 76-78; Styring et al 2017). Settlement and artifact distributions at Tell
Leilan were constrained within its third and second millennium city wall, a
feature absent at Brak and at Hamoukar’s diffuse settlement, which likely
explains the differences in the densities of off-site sherd scatters.
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Missing from Ur’s discussion is the Akkadian imperialization of north-
ern Mesopotamia. The extensive evidence reviewed above indicates success-
ful agro-production imperialization that was suddenly truncated, not only at
Leilan but also across the Khabur and Assyrian Plains, from Brak to Nineveh.
That evidence includes The Unfinished Buildings, probably granaries, at Brak,
Leilan, and Mohammed Diyab that were suddenly abandoned at ca. 2200 BC
along with the already occupied monumental buildings at Brak, Leilan and
Mozan (Weiss 2012).

The archaeological record tells us that the abandonment at ca. 2200 BC was
region-wide, not limited to Leilan, as Ur posits. The high-resolution radiocar-
bon dating of terminal occupations at Brak (Emberling 2012), Arbid (Kolinski
2012), and Leilan (Weiss et al. 2012) and the Leilan Region Survey (Ristvet
2012; Arrivabeni 2012) defines the synchronous two-stage abandonments of
these cities and other settlement across the Khabur Plains at ca. 2200 Bc—that
is, at the end of the approximately thirty-year post-Akkadian period—at which
time such ceramics also seal the occupation at Hamoukar (Gibson 2012).
High-resolution radiocarbon dating places the collapse and abandonments of
towns in western Syria, at Umm el-Marra (Schwartz et al. 2012), and Rawda
(Brochier, in press) at the same time, coincident with abandonments across
the Mediterranean and West Asia, as detailed above.

Finally, Ur’s argument that the good citizens of Leilan inexplicably failed
to fertilize their fields and thereby suffered collapse disregards the region’s
millennia-old integrated farming system of cereal cultivation and ruminant
stubble grazing, documented as early as the eighteenth century BC (Matthews
1978: 90). Ur discounts sheep manure as oxidizing too rapidly in “semi-arid
climates” to be an effective fertilizer, an assumption derived from an infor-
mal comment about the “Middle East” (Keen 1946: 48) that was subsequently
applied to “arid and hot regions” (Buringh 1960: 253) and then to semi-arid
northern Mesopotamia (Wilkinson 1982). However, modern observations of
field nitrification of urine and feces by sheep grazing in north Syria, although
difficult to quantify, suggest perduring fertilizing effects (Thomas et al. 2006;
White et al. 1997), especially as plowing may rapidly follow grazing (Hirata,
Fujita, Miyazaki 1998).

The collapse and abandonment of Akkadian imperialized dry-farming
settlement and the synchronous collapse of the Akkadian Empire occurred
alongside abandonment of adjacent dry-farming domains in West Asia and
the Aegean, and the collapse of the Old Kingdom in Egypt due to Nile flow
failure. The collapses and abandonments were a direct effect of 4.2 ka—3.9
ka BP megadrought’s abruptness (less than 5 years), magnitude (30-50 per-
cent precipitation reduction) and duration (200-300 years), which altogether
reduced dry-farming agriculture to unsustainable societal limits and reduced
aggregate irrigation-agriculture production. In the absence of technological
innovation, or region-wide subsistence relief, the dry-farming region adapta-
tions across West Asia were collapse, abandonment, habitat tracking to agri-
cultural refugia, and nomadization, each a form of demographic and societal
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resilience. In the steppic zone bordering the Euphrates, the adaptive pastoral
response was forage-driven, step-wise movement into southern Mesopotamia,
which ultimately generated brief, hypertrophic Ur IIl-period urbanism. In
Euphrates and Orontes riverine environments, both habitat-tracking and
urban growth ensued, while imperial reorganization was restricted to the
realigned irrigation zone of Ur III dynastic control, where the descendants
of Amorite steppe pastoralists eventually achieved state power. The 4.2 ka BP
abrupt megadrought provides, therefore, an explanatory causal force behind
the dramatic archaeological and epigraphic record of the Akkadian Empire
and its collapse.
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