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Climate change and water availability in the Middle East are
important in understanding human adaptive capacities in the face
of long-term environmental changes. The key role ofwater availabil-
ity for sedentary and nomad populations in these arid to semiarid
landscapes is understood, but the millennium-scale influence of hy-
drologic instability on vegetation dynamics, human occupation, and
historic land use are unknown, which has led to a stochastic view of
population responses and adaptive capacities to precipitation anom-
alies. Within the time-frame of the last two global climate events,
the Medieval Climate Anomaly and the Little Ice Age, we report
hydrologic instability reconstructed from pollen-derived climate
proxies recovered near Tell Leilan, at the Wadi Jarrah in the Khabur
Plains of northeastern Syria, at the heart of ancient northern Meso-
potamia. By coupling climate proxies with archaeological-historical
data and a pollen-based record of agriculture, this integrative study
suggests that variability in precipitation is a key factor on cropyields,
productivity, and economic systems. It may also have been one of
the main parameters controlling human settlement and population
migrations at the century to millennial timescales in the arid to
semiarid areas of theMiddle East. An abrupt shift to drier conditions
at ca. AD 1400 is contemporaneous with a change from sedentary
village life to regional desertion and nomadization (sheep/camel
pastoralists) during the preindustrial era in formerly Ottoman
realms, and thereby adds climate change to the multiple causes for
Ottoman Empire “decline.”

The historical region of Northern Mesopotamia was recently
subjected to an intense and prolonged drought episode dur-

ing the four hydrological years between AD 2007 and 2010. Very
low precipitation generated a steep decline in agricultural pro-
ductivity in the rain-fed Euphrates and Tigris drainage basins,
and displaced hundreds of thousands of people (1). The worst
drought-affected regions were eastern Syria, northern Iraq, and
Iran, the major grain-growing areas of the northern Fertile
Crescent. This episode corresponds to the driest 4-y period for
the Fertile Crescent since AD 1940, just slightly drier than the
AD 1998–2000 event (1), and is predicted to become more
common as warming proceeds (2). Socioeconomic after-effects
of this recent drought clearly challenge the common belief that
agricultural societies, by technological innovation and societal
adjustment, adaptively protect themselves from variability in
natural precipitation (3). The large arid and semiarid zones of
the Middle East rely on fragile systems of rain-fed or irrigated
cultivation and are especially vulnerable to periodic fluctuations
in climate and, most of all, to changes in hydrology. Anticipated
repetitive drought episodes may exacerbate the vulnerability of
communities unprepared to mitigate their adverse effects (4).
During the last 40 y, many eastern dryland countries (Iran, inland
Israel, Jordan, Turkey) have experienced warming and pre-
cipitation decline (5–8). Drought periods have recurred in an ir-
regular and nonuniformmanner, with highest severity, magnitude,
and duration over the last decade (7). Interacting with other so-
cial, economic, and political variables, they act as a “threat mul-
tiplier” (4, 9). The Middle East has long since exceeded the water
resources necessary to supply its population, and has sought to
expand water distribution and storage systems through dams and
canals until droughts and falling water supplies in aquifers became
critical. Throughout the recent crisis and its aftermath (1), eastern

Syria reveals the same environmental vulnerability as in antiquity
that may severely impact farming constituencies (4).
The critical role of water availability in ancient Mesopotamia is

well-documented in archaeological and historical records (10,
11). In Northern Mesopotamia, the end of the Late Uruk colony
period at ca. 5.2 kyr BP and the desertion of the Akkadian
imperialized landscape at ca. 4.2 kyr BP (12) have fueled debate
on the complex interactions between hydrologic instability, hu-
man adaptation/migration, and urban origin/decline (13–15).
Thresholds above which agro-innovations were not achievable led
to regional habitat-tracking to riparian, paludal, and karst spring-
fed refugia (16). The 5.2 and 4.2 kyr BP arid events are widely
recorded in Mediterranean and Southwest Asian paleoclimatic
records (17–21). Independent archaeological and paleoclimate
data suggest a causal link between low precipitation-higher dust
input, decline of rain-fed agriculture (beyond sustainable limits),
and population desertion that may lead to adaptive regional
abandonment and nomadization. On the Khabur Plains of
northeastern Syria (the northern Jazira), rain-fed (> 250 mm/y−1)
agriculture has been practiced since the earliest domestication of
plants (22). Access to reliable and permanent water/groundwater
resources was the key ecological constraint to cultivation and
settlement then, and is still the case throughout much of the
Middle East and worldwide in semiarid to arid zones (23).
The last millennium contained two contrasted climatic periods

of widespread temperature and hydrological anomalies: the
Medieval Climate Anomaly (MCA) and the Little Ice Age
(LIA), from approximately AD 900–1300 and AD 1550–1850,
respectively (24). This article investigates the hydrologic in-
stability in the Khabur Plains-northeastern Syria (Fig. 1), at the
heart of ancient northern Mesopotamia during these two peri-
ods. Pollen-derived information on vegetation changes were
used to reconstruct hydrological trends and assess the role of
hydrologic instability in human occupation and agricultural
production at the millennial/centennial scale. The modern con-
sequences of the current AD 2007–2010 drought event resonate
with the historical association of precipitation variation with
population migration and desertion in northern Mesopotamia.

Modern Climatic Setting
At the eastern end of the Mediterranean basin, the climate of the
Khabur Plains exhibits hot dry summers and cool wet winters.
Most of the cold-season precipitation is a result of midlatitude
troughs that propagate from the North Atlantic Ocean and
reactivate over the Eastern Mediterranean sea (25). The Khabur
Plains are characterized by steep rainfall gradient and high in-
terannual climate variability. North of the plain, rainfall amounts
reach ca. 500 mm/y−1 (26), whereas southwards, at Al Hassakah
(36°29′40.46′′N; 40°46′05.88′′E; 313 m above sea level), mean
annual precipitation (MAP) and temperature are about 290 mm/
y−1 and 18 °C, respectively. The rainy season extends from
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December to April (80% of MAP), whereas rainfall in June,
July, and August accounts for only 0.2% of the annual total. The
Khabur River, the southernmost major tributary of the Euphrates
system (27), rises in Southern Anatolia, and grows substantially
from the input of major karstic springs after crossing the Turkey-
Syria border (28). TheWadi Jaghjagh and theWadi Jarrah systems
(Fig. 1) are rainfall-dependent and fed by the effluents emanating
from the Tur Abdin Mountains, north of the Khabur Plains.

Results and Discussion
Dry vs. Wet Steppe Landscapes. The Wadi Jarrah region is now
a semiarid steppe characterized by low annual precipitation and
strong wind erosion, as is the entire Khabur Plains (29). It lies in
the steppe vegetation class of Artemisietea herbae–albae meso-
potamica, which includes dwarf-shrub or herbaceous formations
of the Irano-Turanian territories (30). The vegetation has been
overgrazed and deprived of its shrubby constituents by climate
and human pressures (30), as shown by low arboreal pollen
percentages throughout the last millennium (19–43%), with
a submodern value less than 25% of the terrestrial pollen sum.
Warm mixed woodland [WMW; (e.g., deciduous Quercus, Frax-
inus, Pinus, Platanus)] and xeric wood/shrub [XWS; (e.g., Cra-
taegus, Juniperus, Pistacia)] (Fig. 2) tend to disappear during the
AD 20th century (Fig. 3).
The two main pollen-derived vegetation patterns (PdV) (Fig.

2) isolated for the last 1,600 y, dry shrub-steppe (DSS) and moist
forb-grass meadow steppe (MGS), correspond to two contrasted
components of steppic environment (Fig. 3). These two time-
series are significantly anticorrelated with the highest correlation
coefficient centered on Lag0 (−0.95, P = 0.05) (Fig. 4). The arid
component [−0.72 of total variance on principal components
analysis (PCA)-Axis 1] is led by forbs (nonwoody plants other
than grass, sedge, rush; for example, Artemisia herba-alba,
Asteraceae, Chenopodiaceae/Amaranthaceae, Ephedra) mixed

with xeric shrubs (e.g., Tamarix, Teucrium, Ziziphus). The de-
velopment of a permanent DSS at Wadi Jarrah, the equivalent of
the modern Artemisietea herbae–albae mesopotamica steppe, has
occurred since ca. AD 1400 (Fig. 3). Previous increases were
recorded before AD 500 and at ca. AD 800 (Fig. 3).
The PdV DSS (Fig. 2) is similar to modern pollen-based veg-

etation recorded in the Iranian desert-steppe (31), at Ramlat as-
Sab’atayn in Yemen (32), at Abu-Madi on the Nile Delta (33), at
low elevation in Central Jordan (34), and on the Alashan Plateau
(35) in China. This Asian/Arabian semiarid desert/steppic envi-
ronment is mainly driven by climate (low rainfall, wind erosion)
and instable/poor soil (sandy/rocky type). Similar vegetation pat-
terns were recorded during parts of the Early and Late Holocene
at Wadi Dana, Jordan (36), and at Khawr Rawri and Khawr Al
Balid, Sultanate of Oman (37). The DSS is linked in the neighbor
joining clustering (NJ) with XWS (Fig. 4), although a part of the
tree pollen-types from this cluster (Fig. 2) may result from long-
distance transport from northern mountains.
The PdV MGS wet component (+0.67 of total variance on

PCA-Axis 1) is loaded by grass (Poaceae) and hygrophytes (e.g.,
Cyperaceae, Ranunculaceae, Typha/Sparganium) with meadow
forbs (e.g., Apiaceae, Caryophyllaceae, Malvaceae, Primulaceae,
Rubiaceae). The MGS is dominant in the surroundings of the
river channel at ca. AD 530–750 and ca. AD 850–1350. A large
peak is last recorded at ca. AD 1750. The PdV MGS is similar to
marsh areas recorded during the Early Holocene in the north-
eastern Rub’ al-Khali desert, Arabian Peninsula (38), and in the
modern pollen-based vegetation at Baltim, Nile Delta-Egypt
(33), at Gravgaz, Turkey (39), at Cherepan and Trialeti, Cau-
casus (40), and in Qaidam basin, China (41). The MGS is linked
in the NJ with the WMW (Fig. 2), suggesting a close link with the
modern vegetation patterns at Cherepan and Trialeti near Tbilisi
(40), defined by a MAP of 495.5 mm/y−1. The expansion of a wet
steppe/forest-steppe is often correlated with humid conditions at

Fig. 1. Map of northeastern Syria with an
overview of Wadi Jarrah in the Khabur
Plains, northern Jazira. Period-wise village
level settlement (<4 ha) indicated with small
circles; likely larger settlements are Tartab
(partial destruction by modern road-con-
struction, 1985) and multisite Charmoukh
(probably ancient capital city Adhrama).
Precipitation isohyets are mm/annum.
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all these sites. The development of swampy forbs in and around
the river channel and the growth of a wet meadow steppe at
Wadi Jarrah are directly linked with higher input of freshwater
and increased water availability in soils, generated by higher
rainfall and gravity flow on the alluvial plain.
DSS and MGS PdV (dry vs. wet) correspond to the main

loadings in the PCA, explaining most of the variance for the
PCA-Axis 1 ordination of the data, which accounts for +0.939 of
total inertia (Fig. 3). Arid DSS (−0.72) and XWS (−0.03) are
loaded in negative values, whereas positive values correspond to
wet MGS (+0.67) and WMW (+0.16). DSS and MGS also
constitute the two distant branches in the NJ (Fig. 4), and
samples in the kernel-density map are clearly split by these two
components (Fig. 4). Variations in PCA-Axis 1 values therefore
reflect changes in water availability through the MCA and
LIA periods.

Development of Sedentary Life. During antiquity and Islamic times,
the Khabur Plains were crossed by the Euphrates trade route
(‘Abb�asid Road) connecting Aleppo to Mosul through the north-
ernMesopotamian plateau, and formed an important link between
western Syria and northernMesopotamia (42). AlongWadi Jarrah,
the Tell Leilan Region surface survey and historical data both
document Early Islamic, ‘Abb�asid, Ayy�ubid, Mamluk, and Otto-
man settlement patterns with considerable variability (43).
The period encompassing the MCA corresponds to a gradual

enlargement of surveyed settlements in the region of Tell Leilan
during the ‘Abb�asid period (AD 10–11th centuries), reaching a
height of occupation during the Ayy�ubid dynasty (AD 12–13th
centuries, 30 settlements) and Mamluk sultanate (AD end 13th–
14th centuries, 20 settlements) (Fig. 3). This period corresponds
to a main positive deviation on the PCA-Axis 1 at ca. AD 850–

1350, suggesting overall higher water input in the area, although
short-term drought events are mentioned in the Chronicle of
Michael the Syrian (44). High scores in the warm/cool steppe
(WAST/COST) ratio (ca. AD 1050–1300), are indicative of
a warming trend. Agricultural activities (Fig. 3), led by Poaceae
cerealia (e.g., barley, wheat) and Fabaceae (e.g., fava bean,
Pisum sp., Cicer sp., Lens culinaris), reach a peak at ca. AD 1100–
1350, with farming weeds/secondary anthropogenic indicators
(e.g., Centaurea, Plantago, Rumex, Polygonum). According to
medieval geographers (e.g., ibn �Sadd�ad, AD 13th century),
a time of political safety and agro-economic development ex-
tended from the Ayy�ubid dynasty to the Mamluk sultanate, de-
spite the presence of threatening pastoralist tribal groups (45).
The text of ibn �Sadd�ad provides a list of regional products for the
northern Jazira, including wheat, barley, rice, and sesame. Wheat
(above MAP 300 mm/y−1) and barley (MAP 200–300 mm/y−1)
were cultivated during the MCA and are still the most important
cereal crops in the semiarid Eastern Mediterranean region (46).
Today, irrigated agriculture essentially develops along the major
floodplains of the Euphrates or is confined to areas with per-
manent groundwater (47). The region’s traditional agriculture,
characterized by rain-fed cultivation and gravity-flow irrigation,
is mainly concentrated on wheat and barley (48, 49), the latter
because of its high resistance to salinity and tolerance of poor
soils (50). Nonirrigated crops, particularly sensitive to pre-
cipitation variability that may affect the area, are becoming a key
factor in crop yields, productivity, and economic systems (1).
Favored by wet-warm conditions and an active river channel,
agro-productivity reached a maximum during the MCA, leading
to sedentary life and the development of an extended town/
village agro-economy.
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The positive rainfall anomalies recorded in northern Jazira
(Fig. 3) are correlated with humid conditions in southern Levant
as reported by the δ18O records from Soreq Cave (51) and the
Ashdod coast (52, 53), both showing minimal δ18O values be-
tween ca. AD 1050 and 1350 [termed “Event II” (53)]. Increases
in winter precipitation amounts at Nar Gölü (54), low δ18O
values in the Red Sea (55), enhanced Nile floods (56), higher
fluvial inputs in the Arabian Sea off Pakistan (57), stronger In-
dian monsoon (58), and high water levels in the Saharan Lakes
(59) show that wetter climatic conditions prevailed throughout
the Middle East and in the nearby tropical zones during the time
period coinciding with the MCA. Warm and wet MCA in the
Middle East contrasts with the modern warm and dry conditions,
and the predictions of climate models, which clearly show that
warming would lead to drier bio-climatic conditions (5). The
relationship between changes in temperature and precipitation
appear quite complex. During the following intermediate phase
(AD 1400–1550) and the LIA, a drier and cooler climate de-
veloped in the region. Dry conditions still prevail today, but with
warmer temperatures (Fig. 3).

Abandonment of Sedentary Life. This settlement pattern changed
after the 14th century AD, at the end of the Mamluk sultanate. A
significant drop in the number of occupied sites indicates heavy
depopulation during the Late Islamic (AD 15–16th centuries)
and Ottoman (AD 17th to the beginning of the 20th century)
periods (43, 48, 60–62). By the late 1500s, the core Mediterra-
nean lands of the Ottoman Empire (Greece, southern Bulgaria,
Anatolia, Syria, and Palestine) suffered from the increased
warfare (63) and previous demographic growth had strongly
eroded the ecological capacity of the territories. Because most of
the peasants were overwhelmingly dependent on a single crop of
winter wheat or barley, semiarid farmland left them exposed to
climate fluctuations. At Wadi Jarrah, the end of sedentary ag-
ricultural village settlement and regional abandonment are co-
incident with lower cultivation from AD 1400 onward, and also
with the high development of DSS and drought-driven major
hydrological changes. Most negative scores in the PCA-Axis 1
are recorded between ca. AD 1550 and 1960, after an isolated
peak at ca. AD 1400 (Fig. 3). The lowest temperatures, as sug-
gested by the lowest scores of the WAST/COST ratio, were
recorded during the LIA (Fig. 3). The area became drier and
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cooler. Precipitation and groundwater were probably insufficient
to maintain sustainable agriculture. Tribal pastoralists may have
taken advantage of the abandonment of the drying river alluvi-
ums to intensify their raids, accelerating the end of agricultural
settlement at abandoned village loci (48). Around Tell Leilan,
rare but significant Islamic artifacts, unglazed pottery pro-
duction, and clay pipe fragments, document nomadic occupa-
tions of the area at this time, probably by sheep and camel
herders. These nomadic settlements and regional abandonments
are recorded at several places on the Khabur Plains, and adja-
cent northern Iraq during the LIA (43). The climate change adds
an important factor within long-standing debates about the
nature of the late Ottoman agro-political economy (64).
The changing hydrologic conditions, leading to a dry LIA in

northern Mesopotamia, are also indicated by marked increases
in δ18O values on Ashdod coast (52, 53), Soreq Cave (51), and
Nar Gölü (54). Decreased precipitation in Central Asia (65),
weaker Indian monsoon (58), reduced Nile floods (56), and
extreme dry events in the north Aegean (66) corroborate the
hydrologic instability and the extended drought during the LIA.

Submodern Conditions. Although largely uninhabited during the
AD 19th century, tribal Arab and Kurdish pastoralists and
agriculturalists have repopulated the Khabur Plains since the
onset of the AD 20th century, and continuing with the de-
velopment of several small cities, hundreds of villages and
hamlets since AD 1930–1940 (60, 67). Climate proxies (Fig. 3)
show that the important submodern resettlements (AD 20th
century) occurred after the last dry peaks around ca. AD 1925–
1930. A first peak of resettlement was probably reached just after
the first World War, with market driven and railroad-facilitated
wheat cropping on the extensive unsettled Khabur Plains (68,
69). The full resettlement of the Khabur Plains corresponds with
an expansion of agriculture in the wettest northern zones and the
extension of dry farming onto the steppe. The latter event was
achieved by pump irrigation, which has led to summer aridifi-
cation of rivers, strong wind erosion, and soil salinization, forcing
a decline in water table and water quality. Despite the adaptive
capacities led by impressive agro-innovations during the AD 20th
century, populations in northern Jazira are still vulnerable and
cannot adapt in place to environmental changes, such as the
recent AD 2007–2010 drought event.

Materials and Methods
Lithology and Chronology. The Wadi Jarrah (36°51′51.52′′N; 41°14′15.15′′E;
374 m above sea level) is today a dry river channel of the Khabur Plains,
located 20 km south of the Turkish border and 40 km north of the Iraqi
border (Fig. 1). The 210-cm sedimentary deposits of the Wadi Jarrah (Fig. S1)
consist of dark, sandy silts with gravels in the upper section, and muddy clay
with zones of abundant gastropod and pelecypod shells (still fully articu-
lated) in the lower section. These sedimentary deposits are the result of

a shift from a meandering to braided river channel system, completely dry
today, and indicate regional changes in hydrology. The chronology is based
on five accelerator mass spectrometry (AMS) radiocarbon (14C) ages (Table
1), performed on scarce plant remains. The AMS 14C dates show an orderly
relationship with depth and are therefore considered reliable. All conven-
tional radiocarbon ages have been calibrated (one- and two-σ calendar
calibration) using Calib-Rev. 6.0.1 (70) and Oxcal 4.1 (71).

Pollen Analysis. A total of 40 samples were prepared for pollen analyses using
standard palynological procedures. Pollen grains were counted under 400×
and 1,000× magnification using an Olympus microscope. Pollen frequencies
(%) are based on the total pollen sum (average: 525 pollen grains) excluding
local hygrophytes and spores of nonvascular cryptogams. Aquatic taxa fre-
quencies are calculated by adding local hygrophytes-hydrophytes to the
terrestrial pollen sum. The arboreal pollen curve, calculated by summing
frequencies of arboreal taxa for each sample, provides an estimate of the
relative forest density.

Numerical Analyses. Paucity of regional modern pollen spectra prevent
a pollen-based quantification of changes in temperature and rainfall amount,
which was approached by the following methods. Pollen data have been
converted into PdV, using cluster analysis (algorithm: paired group; similarity
measure: correlation) (Fig. 2). Pollen types from each cluster were summed
to create PdV time-series with DSS, MGS, XWS, and WMW (Fig. 3). PCA was
then performed to test the ordination of samples by assessing major changes
in PdV-frequencies. The main variance is loaded by the PCA-Axis 1. PdV-
frequencies and PCA-Axis 1 scores have been plotted on a linear depth-scale
(Fig. 3). The modern score line drawn on the PCA-Axis 1 corresponds to the
value of the upper sample (Fig. 3). An aridity index was computed by the
ratio DSS vs. MGS PdV (Fig. 3). Pollen data have also been converted into
plant functional types and a pollen-derived biomization of the plant func-
tional types has been elaborated based on appropriate methods (72, 73).
Pollen-derived biomes are similar to the regional studies in the Mediterra-
nean and Kazakhstan (73), featuring WAST and COST. Temperature changes
are elucidated using the warm-cool WAST/COST ratio (Fig. 3).

A linear detrended cross-correlation (P = 0.05) was then applied to assess
the relationships between DSS vs. MGS time-series (Fig. 4). Positive/negative
correlation coefficients are considered, focusing on the Lag0 value (with
+0.50/−0.50 as significant thresholds). The ecological distance DSS vs. MGS
was further tested using NJ clustering (Fig. 4). NJ analysis (correlation as
similarity measure and final branch as root) was used to compute the lengths
of branches of a tree, using branches as ecological distances. A kernel-den-
sity map (bootstrap 100 × 100) was established to stress the distribution of
samples according to DSS vs. MGS time-series (Fig. 4).
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